
Linear and Nonlinear Optimization of 
CubeSat Constellation Lifetime Using 

Differential Drag Control 
 

Daniel Andenmatten 
Russell Hawkins 

Jonathan Wapman 
 

December 12, 2018 
 

Submitted towards fulfillment of the requirements for 
MAE 298 - Optimal Control  

 

 

 
 

Department of Mechanical Engineering 

University of California Davis 
Davis, CA 95616 

  



2 
 

1 ABSTRACT 
CubeSat constellations have many uses for applications such as weather monitoring, 

communications, and earth imaging. CubeSats often have no onboard propulsion. However, to 
change velocity and altitude, CubeSats can control the amount of air resistance they experience by 
controlling the amount of surface area presented in their direction of motion. This causes the 
CubeSat to lose altitude while at the same time increasing their angular velocity. In this project, 
we first recreate previous work from Planet Labs and Sin et al. that implements CubeSat 
constellation separation using differential drag and linear programming. Sin’s research linearizes 
nonlinear orbital dynamics in an effort to improve computational complexity. As a comparison, 
our project implements optimization using the real-world nonlinear dynamics and compares these 
results against the results of Sin’s closed-loop linear programming-based method. Performance 
metrics include constellation altitude drop, computation complexity, and constraint satisfaction. In 
this project, we first successfully recreate the closed-loop linear programming optimization 
previously performed by Sin et al. From these experiments, we then find that linear, closed-loop 
optimization computation time scales approximately with 𝑁", where N is the number of satellites 
in the simulation. Finally, we show that although optimization using nonlinear constraints displays 
slightly better altitude drop performance for small numbers of satellites, attempts to use larger 
number of satellites results in scenarios where the problem’s constraints cannot be met, and where 
results are heavily dependent on initial guesses for the optimizer. 

2 OVERVIEW 
Over the past decade, access to space and commercial opportunities have increased 

significantly. The decreasing cost of rocket launches and prevalence of modular and inexpensive 
“CubeSat” designs have made launching constellations of tens to hundreds of satellites feasible. 
Currently, companies such as SpaceX, Facebook, OneWeb, and others are developing satellite 
constellations to create a space-based internet designed to serve remote areas of the world which 
often lack communication infrastructure [1], [2]. Others, such as Planet Labs, have already 
deployed constellations of satellites for applications such as earth imaging [3]. There is no doubt 
that the number of small satellites deployed, and the range of applications they serve, will grow 
immensely in the near future. 

 
The compact and modular design of small satellites has many economic advantages, 

however it generally imposes severe limitations on control. Often, small satellites - due to size and 
weight constraints - do not have any external thrusters that can be used for position and attitude 
control. In these cases, control of CubeSats is limited to internal reaction wheels that can control 
orientation only. This attitude control can be cleverly leveraged into control of the satellite’s orbit 
by taking advantage of the attitude dependent atmospheric drag force acting on the satellite. 
Changing attitude changes the cross-sectional area of the satellite, and thus the drag it experiences. 
As the atmospheric drag increases, the satellite loses altitude while simultaneously gaining angular 
velocity. By intelligently controlling the drag force, the position in the constellation can be 
regulated. 

 
When applied to a constellation of CubeSats, selectively changing the drag on each satellite 

individually can be used to create a constellation of equally-spaced satellites from an initially 



3 
 

concentrated distribution. This differential drag method of satellite positioning has been 
successfully demonstrated by Planet Labs’s earth-imaging constellation [3]. There is a tradeoff, 
however, in that increasing the drag on a satellite necessarily decreases the service lifespan of the 
satellite. Drag inevitably leads to loss of altitude, eventually deorbiting the satellite. Therefore, any 
maneuver carried out via modifying drag forces should be optimized to minimize loss in altitude. 
This optimization procedure is the focus of this project. However, note that there are other 
optimizations for acquisition time, separation error or local area coverage due to other objectives. 
We will replicate the altitude optimization procedure recently presented in the literature, and then 
attempt to expand one aspect of that procedure. 

3 LITERATURE REVIEW  
The physics of satellite control using differential drag is a well-studied problem [4]–[6], 

and has been used in practice several times. In 2013, the Aerospace Corporation’s three AeroCube-
4 satellites utilized in-orbit differential drag to control satellite spacing by controlling their solar 
panels [7]. In a commercial application, Planet Labs has used differential drag to control spacing 
of an array of over 100 satellites [3]. Planet Labs’ constellation uses “bang-bang” inputs, where 
each satellite is either in maximum drag or minimum drag [3], [8]. In our study, we consider the 
satellite’s drag to be any value between the minimum and maximum values. 

  
The majority of work in this proposal extends previous work done by Sin et al. in [9]. The 

authors present a linear-programming-based method of separating a constellation of satellites using 
differential drag with the goal of maximizing the radius of the lowest satellite of the constellation. 
This is equivalent to maximizing the operational lifetime of the constellation. Additionally, this 
linear programming method was analyzed both for open-loop control and closed-loop control 
(using Model Predictive Control). The work in this paper uses Planet Labs’ constellation as its 
model (although it was never implemented in practice), but can be generalized to apply to any 
CubeSat constellation. Sin’s work has been further extended in [10], again with a focus on Planet 
Labs’ constellation implementation. However, in this paper, Blatner implements linear and 
quadratic programming algorithms to minimize non-uniform spacing between adjacent satellites, 
rather than maximizing the minimum radius of the constellation. Other portions of his work focus 
on optimal positioning of the satellites based on initial conditions when the satellites first separate. 

4 ORBITAL DYNAMICS AND MODEL GENERATION 

4.1 ORBITAL DYNAMICS 
 

The physics of satellite control using differential drag is a well-studied problem [4]–[6]. 
By using a satellite’s internal reaction wheels to reorient, the amount of atmospheric drag acting 
on a satellite can be controlled, thus allowing the operator some degree of control over the 
satellite’s descent rate and angular velocity without the need for external actuators such as 
thrusters. The satellite’s motion to be described by the following second-order ordinary differential 
equation:  

 



4 
 

�̈�= 	−
𝜇*
|𝑟|"

𝑟 + �⃗�.*/01/2 

 
 

where �⃗�	 is the position vector from the center of the earth pointing to the satellite and 𝜇* is the 
gravitational parameter of the Earth. The first term in the equation is the acceleration due to Earth’s 
gravity, the second term �⃗�.*/01/2 includes all accelerations due to other perturbing forces. These 
forces include perturbations due to the gravitational influence of the sun and moon, solar radiation 
pressure, and atmospheric drag. For our purposes we only consider atmospheric drag, whose 
acceleration is given by 

 

�⃗�304 = −
1
2
𝐶8𝐴
𝑚 𝜌|�⃗�/*=| ∗ 𝑣/*= 

 
In this equation, 𝐶? is the satellite’s drag coefficient, A is the cross-sectional area of the satellite, 
𝑚 is the satellite mass, 𝜌 is the atmospheric density, which is a function of altitude, and  �⃗�/*= is 
the velocity of the satellite relative to the atmosphere. 

 
For the simulations in this paper, we use the same constant values as Sin, who used the 

values from Li and Mason [8] for the satellite’s drag coefficient, mass, maximum and minimum 
drag surface areas.  For atmospheric density, we use the same simplified version of the Harris-
Priester model as authors in [9]. In order to make the problem tractable, several assumptions are 
made.  First, this model assumes near-circular orbits. Second, the relative velocity of the satellite 
with respect to the atmosphere is based on the assumption that the atmosphere rotates with that of 
the earth’s rotation. Third, since atmospheric drag is opposite of the velocity vector, we ignore the 
radial acceleration component of the drag perturbation. Finally, we only consider the component 
of the earth’s angular velocity that is about the normal axis of the orbital plane. We assume that 
both the angular velocity of the earth about its axis and the inclination of the orbit are constant. 
For a near-polar orbit, the relative speed of the satellite is essentially the tangential speed of the 
satellite. After a transformation into polar coordinates and applying these assumptions we are left 
with the following continuous model for the equations of motion for the satellite:  

 
 

�̈� = 𝑟𝜔A −
𝜇*
𝑟A 

 

�̈� =
1
𝑟 C−2�̇�𝜔 −

1
2
𝐶8
𝑚 𝜌(𝑟)|�⃗�/*=|A𝐴G 

 

This optimization problem requires the use of a discrete-time model to determine the 
radius, angular velocity, and angular position of each satellite i  at time step k, which was 
introduced by Sin in [9]. These equations are given below: 

 
𝑟H(𝑘 + 1) = 	 𝑟H(𝑘) + ∆𝑡 ∗ 𝑆M{𝑟H(𝑘), 𝜔H(𝑘)} ∗ 𝑢H(𝑘) 

 
𝜔H(𝑘 + 1) = 	𝜔H(𝑘) + ∆𝑡 ∗ 𝑆R{𝑟H(𝑘), 𝜔H(𝑘)} ∗ 𝑢H(𝑘) 



5 
 

𝜃H(𝑘 + 1) = 	𝜃H(𝑘) + 𝜔H(𝑘) ∗ ∆𝑡 +
1
2∆𝑡 ∗ 𝑆

R{𝑟H(𝑘), 𝜔H(𝑘)} ∗ 𝑢H(𝑘) 
 
Note that these functions are inherently nonlinear. Each 𝑟, 𝜔 , and 𝜃  at each time step 

depend on their previous values. The functions  𝑆M  and 𝑆R  capture the effect of drag on the 
dynamics. 𝑢H(𝑘) represents the exposed surface area of satellite 𝑖 at each time step 𝑘, which is the 
variable used to control the system. 𝑆M and 𝑆R therefore determine how each input to the system 
affects the dynamics. These functions are derived by applying Gaussian variation of parameters to 
the equations of motion, and are used to approximate the rates of change of the time-varying 
elements in the solution for the unperturbed, two-body system due to small forces. Vallado showed 
how the average rate of change in the radius of an orbit and the angular speed of the satellite can 
be expressed in terms of the atmospheric drag perturbation [11]. These results can be expressed as 
follows: 

𝑆M(𝑟, 𝜔) = 	−
𝐶8
𝑚 𝜌(𝑟)|�⃗�/*=(𝑟, 𝜔)|AT

𝑟"

𝜇*
 

𝑆R(𝑟, 𝜔) =
3
2
𝐶8
𝑚 𝜌(𝑟)|�⃗�/*=(𝑟, 𝜔)|A

1
𝑟 

 
We note that r(T), ω(T), and θ(T) do not depend linearly on the input u for our model. 

4.2 LINEAR OPTIMIZATION PROBLEM 
 

Our goal is to spread out an initial cluster of satellites in low Earth orbit. The objective of 
the optimization however can vary depending on the use of the CubeSat constellation. We are 
interested in maximizing the operational lifetime of the constellation by minimizing altitude loss 
during acquisition. Furthermore, we must complete this constellation formation maneuver in a 
fixed number of days subject to constraints on relative spacing and velocity between pairs of 
satellites, as well as minimum and maximum surface areas. Thus, the goal is to minimize the drop 
in altitude of the constellation, which is achieved by maximizing the altitude of the lowest satellite 
in the constellation at the final time step T of the optimization problem. 
 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 min
H\],...,_

𝑟H(𝑇)	 
 

Angular separations can be measured either between sequentially numbered satellites, or relative 
to a single reference satellite. Defining the angular position vector as θ = [𝜃], . . . , 𝜃_ ], relative 
angular separations for all satellites can be expressed as ∆ = D · θ, and the angular separation error 
is ∆ − ∆des = D · θ − ∆des. The definitions for the separation matrices D and the desired angular 
separations ∆des are given below for both formulations. We chose to use sequential separations 
for our optimization.   



6 
 

                   

∆8*a ∶= c
2𝜋
𝑁 ,… ,

2𝜋
𝑁 ,

2𝜋
𝑁 (𝑁 − 1)f 									∆8*a ∶= c0,

2𝜋
𝑁 , 2

2𝜋
𝑁 ,… , (𝑁 − 1)

2𝜋
𝑁 f 

To achieve equal angular spacing of the satellites at the desired final time step T, we use the 
following inequality constraint in our optimization problem: 

‖𝐷 ∙ 𝜃(𝑇) − ∆8*a‖ ≤ 𝜀m 

By constraining the maximum of the absolute values of these errors at time T to be less than or 
equal to some angular position error tolerance	𝜀m, we can achieve approximately equal spacing. 
Similarly, by constraining the angular velocities of adjacent satellites to be approximately zero, 
we can ensure that the constellation will tend to remain equally spaced in the future. 

‖𝐷 ∙ 𝜔(𝑇)‖ ≤ 𝜀n 

𝜀n is an angular velocity error tolerance close to zero. The last constraint missing is on the input, 
which we have to limit to the actual physical dimensions of the CubeSat.  Planet Labs’ 
constellation uses “bang-bang” inputs, where each satellite is either in maximum drag or 
minimum drag [3], [8]. In our proposal, we consider the satellite’s drag to be any value between 
the minimum and maximum values. 

𝑈4Hp ≤ 𝑈 ≤ 𝑈43q 

 To obtain a linear program, we must first precompute reference trajectories with the assumption 
that each satellite is under minimum drag input until final time step T. The reference trajectories 
are substituted in 𝑆M and 𝑆R so that the equations are linear but time-varying.  
 
We estimate	𝑟(𝑇),	𝜔(𝑇) and 𝜃(𝑇) expressed in matrix form from: 
 

𝑟(𝑇) = 𝑟(0) + ∆𝑡 ∗ 𝑆̅M ∗ 𝑈	
𝜔(𝑇) = 𝜔(0) + ∆𝑡 ∗ 𝑆̅R ∗ 𝑈 

𝜃(𝑇) = 𝜃(0) + Δ𝑡 ∗ 𝑇 ∗ 𝜔(0) + ∆𝑡A ∗ 𝑆̅∝ ∗ 𝑈 
 
𝑆̅M, 𝑆̅R	𝑎𝑛𝑑	𝑆̅∝	 are matrices that are computed prior to solving carrying out the optimization. The 
methods for constructing these matrices can be found in [9]. The assumption of minimum drag for 
the open loop linear optimization results in the same reference trajectory for all satellites. For MPC 
with a decreasing horizon we recompute the reference trajectory for each individual satellite at 
each time step with the same assumption that the input will be under minimum drag until time step 
T. We considered implementing a reference trajectory computation in which only the first iteration 
uses the minimum drag assumption and all subsequent ones would use the previous iteration’s 
solution. After gaining some experience with the system we quickly realized that our satellite drop 



7 
 

in altitude is small compared to the range of values we have for the atmospheric density and thus 
updating the reference trajectory with previous input commands will not have a profound effect 
on the solution.  

By precomputing the reference trajectory, we can now state the problem in standard form:  

min
q
𝑓x𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜		𝐴𝑥 ≤ 𝑏 

Where 𝑥 = [𝑈 𝑡]x and	𝑓x = [0]×(_∙x) 1].  

 

The matrices for the inequality constraints are:   

 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −∆𝑡 ∗ 𝑆̅M −1_×]
∆𝑡A ∗ 𝐷 ∗ 𝑆̅∝
−∆𝑡A ∗ 𝐷 ∗ 𝑆̅∝

0_×]
0_×]

∆𝑡 ∗ 𝐷 ∗ 𝑆̅R
−∆𝑡 ∗ 𝐷 ∗ 𝑆̅R
𝐼(_∗x)×(_∗x)
−𝐼(_∗x)×(_∗x)

0_×]
0_×]
0_×]
0_×] ⎦

⎥
⎥
⎥
⎥
⎥
⎤

												𝑏 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑟(0)
𝜀m ∙ 1_×] − 𝐷 ∙ [𝜃(0) + ∆𝑡 ∙ 𝑇 ∙ 𝜔(0)] + ∆8*a
𝜀m ∙ 1_×] + 𝐷 ∙ [𝜃(0) + ∆𝑡 ∙ 𝑇 ∙ 𝜔(0)] − ∆8*a

𝜀n ∙ 1_×] − 𝐷𝜔(0)
𝜀n ∙ 1_×] + 𝐷𝜔(0)
𝑢43q ∙ 1(_×x)×]

−𝑢4Hp ∙ 1(_×x)×] ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

4.3 NONLINEAR OPTIMIZATION PROBLEM 
 

In addition to replicating the results from [9], we wanted to carry out an original satellite 
optimization analysis of our own. After some consideration of the complexities of the orbital 
mechanics of the problem, we decided that an interesting and relatively straightforward extension 
would be to attempt the optimization without the linearization procedure. The objective is the 
same: to maximize the smallest orbital radius of the satellites at time T, (or to minimize the altitude 
loss of the satellites). The constraints are the same as well: that the angular separation of the 
satellites at time T be uniform to within a certain tolerance, and that the relative angular velocities 
be zero within a certain tolerance.  

The problem can be formulated as 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	 min
H\],...,_

𝑟H(𝑇)	 
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	 

‖𝐷 ∙ 𝜃(𝑇) − ∆8*a‖ ≤ 𝜀m	, 

‖𝐷 ∙ 𝜔(𝑇)‖ ≤ 𝜀n, 



8 
 

𝑈4Hp ≤ 𝑈 ≤ 𝑈43q 

where now 𝑟H(𝑇), 𝜃(𝑇), and 𝜔(𝑇) are nonlinear functions of the input U, computed directly from 
the discretization of the nonlinear dynamics. This nonlinearity eliminates guarantees of convexity 
and makes the computation substantially more expensive. The actual calculation was carried out 
in Matlab, using the fmincon optimization function with the same parameters used for the linear 
optimization. 

5 RESULTS 

5.1 ORIGINAL LINEAR PROGRAMMING RESULTS 
 
The following figures display the original results initially determined in [9] and reprinted 

here for comparison. These simulations were run with N = 105 satellites and a horizon of T = 71 
days, and will be used as a reference in the following sections.  

 

 
From left to right, top to bottom: 

Figure 1: Area Commands using Open-Loop Linear Programming 

Figure 2: Satellite Spacing using Open-Loop Linear Programming 

Figure 3: Area Commands using Closed-Loop Linear Programming 

Figure 4: Satellite Spacing using Closed-Loop Linear Programming 



9 
 

5.2 OPEN-LOOP LINEAR PROGRAMMING RECREATION RESULTS 
 

The first step in this project was to recreate the open-loop linear programming results of 
Sin’s paper. This was completed successfully. Although there are some small differences in 
satellite spacing or area commands over time, overall our problem formulation delivers very 
similar results, with deviations likely resulting from imperfect information on the methods used 
by Sin in his original paper (such as approximations to the atmospheric density model). 

 
Figure 5: Replicated Open-Loop Linear Optimization 

5.3 CLOSED-LOOP LINEAR OPTIMIZATION RECREATION RESULTS 
 

After successfully recreating the open-loop linear optimization performed in [9], we then 
attempt to recreate this work’s closed-loop linear optimization results. Overall, our algorithm 
displayed similar results. The altitude drop is reduced from 11.55 km to 11.16 km, and the final 
satellite spacing and velocities is within the constraints specified by the problem formulation. 
However, there are several significant differences. For example, Error! Reference source not 
found. shows the Sin’s sequence of area commands, which display much more irregularities than 
the input commands computed by our algorithm, which are shown in Figure 6. Additionally, Sin’s 
plots of satellite spacing over time (See Figure 2 and Figure 4) show that several pairs of satellites 
experience negative spacing. This behavior does not appear in our model.  Finally, Sin’s model-
predictive control methods reduce the altitude drop from 11.64 km to 10.71 km (for an 
improvement of 0.93 km) vs our improvement of 11.55 km to 11.16 km (for an improvement of 



10 
 

0.39 km). It is not clear why these deviations exist. The authors failed to discuss their erratic 
behavior as well as the negative separation angles. Intuitively, one would not expect satellites to 
pass each other in the formation process. Thus the most reasonable explanation is that the authors 
of [9] made an undetected error in their algorithm. However we could have made an error in our 
algorithm, or that the original authors used additional information that was not made available in 
their paper. 

 
Figure 6: Replicated Closed-Loop Linear Optimization Results 

5.4 NONLINEAR OPTIMIZATION RESULTS 
 

Without linearization, the optimization was much more computationally intensive. We found 
that for a timespan of T=71 days the largest number of satellites we could practically carry out the 
computation for was 5. Below is a comparison of the computed optimal commands for nonlinear 
optimization and the linear optimization: 



11 
 

 

We can see some qualitative similarities, for example the fact that two of the satellites simply 
alternated swiftly from minimum area to the maximum (or vice versa) over the course of the 
trajectory, while the other three did something smoother, intermediate between maximum and 
minimum. Obviously, thought, the nonlinear optimization leads to a much noisier control input. A 
similar pattern can be seen in the comparison between the nonlinear optimization and the linear 
closed-loop optimization (MPC): 

   
Again there is a qualitative similarity, but the nonlinear optimization gives more noise, however 
the linear closed-loop has some noisy fluctuations as well. It seems that when the nonlinearities of 
the problem are accounted for, the optimal control inputs become much messier and harder to 
interpret.  

To get a sense of how unique the optimal solution is for the nonlinear case, we ran the 
optimization again but with a slightly different initial guess of the solution. The comparison is 
plotted below. 



12 
 

 

Both of these runs successfully satisfied the constraints, even though they are quite different in 
their details. The left run achieved an altitude drop about 1 km smaller than the right run. This 
suggests that the nonlinear problem does not in general have a unique solution, but that there are 
many local minima in the space of possible inputs. This also explains the spikiness seen in the 
linear closed-loop control. 

 Ultimately the most important comparison to make is how small of an altitude drop was 
achieved. In the above cases, the linear open-loop had a drop of 7.94 km, the linear closed-loop 
had a drop of 8.06 km, and the nonlinear had a drop of 7.13 km. Therefore the nonlinear 
optimization was able to achieve marginally better performance, by virtue of its more accurate 
model, at the cost of considerably more computation time.  

5.5 COMPUTATION TIME COMPARISON 
 

For this evaluation, we set T = 71 days and varied the number of satellites from N = 2 to N 
= 50 at increments of 5 satellites. After each iteration, we measured the elapsed time and altitude 
drop. The results of this experiment, which can be seen in Figure 7, show that the runtime 
complexity is approximately cubic, although it could be found to be a higher or lower-order 
polynomial if more data points were available.  

 



13 
 

 
Figure 7: Computation Time vs Number of Satellites (T = 71) 

6 CONCLUSION 
We successfully recreated Sin’s linear optimization as well as the feedback MPC with slight 

deviations from their results. Although we were not able to identify why our results differed from 
theirs, we suspect that this could be due to the atmospheric density model used in our optimization, 
which is poorly explained in their original paper. In addition to the density model, we assume that 
the reference trajectory is computed using the minimal drag assumption at each iteration and not 
the previously determined input commands. This project focuses on the optimization methods and 
procedures used for constellation separation, thus we chose to ignore the impacts of using different 
atmospheric models, time horizon, and reference trajectory computation. Although the orbital 
dynamics are nonlinear, we confirmed that the angular velocity of a satellite controlled by 
differential drag can be approximated as linear over the operating range of a day. Therefore, the 
solution from the linear program - even when applied in open-loop - provides a semi-equally 
spaced constellation. To improve the spacing of the constellation, a model predictive controller 
with the shrinking horizon approach was implemented. The MPC achieved an equally-spaced 
constellation that satisfied design tolerances. Finally, we found that the nonlinear program was 
able to converge to a solution, despite it being potentially problematic because of its nonconvexity. 
However, the computational cost was dramatically larger, preventing us from doing calculations 
for more than 5 satellites. For the N=5 case, the nonlinear optimization performed marginally 
better in terms of altitude drop, however the optimal control inputs were found to be sensitive to 
the initial guess of the optimization. This suggests that there are many local optima in the space of 
possible inputs. 

R² = 0.9863

R² = 0.9998

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0 10 20 30 40 50 60

Co
m

pu
ta

tio
n 

Ti
m

e 
(s

ec
)

Number of Satellites

Computation Time vs Number of Satellites (T = 71)

Linear Open-Loop Linear Closed-Loop

Poly. (Linear Open-Loop) Poly. (Linear Closed-Loop)



14 
 

7 CONTRIBUTIONS 
Daniel and Jonathan originally began working together to find an optimization problem 

related to CubeSats. After Russell joined the group, he proposed a project related to Sin’s paper, 
which we all agreed to. We then worked as a group to identify the goals of our project. Jonathan 
initially began work on this project by writing the dynamics and linear optimization code, 
including functions for performing the MPC optimization and generating the plots used in this 
paper. However, there were some initial bugs with this code, which Daniel and Russell helped 
resolve. After the linear programming was finished, Russell implemented optimization using 
nonlinear constraints. The majority of the final report (in particular the Orbital Dynamics and 
Model Generation section) and presentation were written by Daniel, with Jonathan and Russell 
contributing analysis for the results of their individual code contributions. 

  



15 
 

8 SOURCE CODE 
The source code for this project can be found at: 

https://github.com/jdwapman/SmallSatSeparation 

9 REFERENCES 
[1] L. Grush, “SpaceX wants to fly some internet satellites closer to Earth to cut down on space 

trash,” The Verge, 09-Nov-2018. [Online]. Available: 
https://www.theverge.com/2018/11/9/18016962/spacex-internet-satellites-space-debris-trash-
orbit-closer-earth-distance-atmosphere. [Accessed: 11-Nov-2018]. 

[2] M. Harris, “Tech giants race to build orbital internet [News],” IEEE Spectr., vol. 55, no. 6, 
pp. 10–11, Jun. 2018. 

[3] C. Foster, H. Hallam, and J. Mason, “Orbit Determination and Differential-drag Control of 
Planet Labs Cubesat Constellations,” ArXiv150903270 Astro-Ph Physicsphysics, Sep. 2015. 

[4] C. L. Leonard, W. M. Hollister, and E. V. Bergmann, “Orbital Formationkeeping with 
Differential Drag,” J. Guid. Control Dyn., vol. 12, no. 1, pp. 108–113, Jan. 1989. 

[5] B. S. Kumar, A. Ng, K. Yoshihara, and A. D. Ruiter, “Differential Drag as a Means of 
Spacecraft Formation Control,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 2, pp. 
1125–1135, Apr. 2011. 

[6] F. A. A. El-Salam and L. Sehnal, “Analytical second-order drag theory with application for 
lifetime determination of artificial satellites in low earth orbits,” Appl. Math. Comput., vol. 
171, no. 2, pp. 948–971, Dec. 2005. 

[7] J. Gangestad, B. Hardy, and D. Hinkley, “Operations, Orbit Determination, and Formation 
Control of the AeroCube-4 CubeSats,” AIAAUSU Conf. Small Satell., Aug. 2013. 

[8] A. S. Li and J. Mason, “Optimal Utility of Satellite Constellation Separation with 
Differential Drag,” in AIAA/AAS Astrodynamics Specialist Conference, 0 vols., American 
Institute of Aeronautics and Astronautics, 2014. 

[9] E. Sin, M. Arcak, and A. Packard, “Small Satellite Constellation Separation using Linear 
Programming based Differential Drag Commands,” ArXiv171000104 Cs, Sep. 2017. 

[10] A. Blatner, “Optimal Differential Drag Control of Small Satellite Constellations,” 
University of California, Berkeley, 2018. 

[11] D. A. Vallado, Fundamentals of Astrodynamics and Applications. California: Microcosm, 
2013. 

 


